Category Archives: Management

QSR Required Procedures

I have identified 40 procedures required by 21 CFR 820: the Quality System Regulation

  1. § 820.22 for quality audits…
  2. § 820.25(b) for identifying training needs…
  3. § 820.30(a)(1) to control the design of the device in order to ensure that specified design requirements are met
  4. § 820.30(c) to ensure that the design requirements relating to a device are appropriate and address the intended use of the device, including the needs of the user and patient
  5. § 820.30(d) for defining and documenting design output in terms that allow an adequate evaluation of conformance to design input requirements
  6. § 820.30(e) to ensure that formal documented reviews of the design results are planned and conducted at appropriate stages of the device’s design development
  7. § 820.30(f) for verifying the device design
  8. § 820.30(g) for validating the device design
  9. § 820.30(h) to ensure that the device design is correctly translated into production specifications
  10. § 820.30(i) for the identification, documentation, validation or where appropriate verification, review, and approval of design changes before their implementation
  11. § 820.40 to control all documents that are required by this part
  12. § 820.50 to ensure that all purchased or otherwise received product and services conform to specified requirements
  13. § 820.60 for identifying product during all stages of receipt, production, distribution, and installation to prevent mixups
  14. § 820.65 for identifying with a control number each unit, lot, or batch of finished devices and where appropriate components
  15. § 820.70(a) that describe any process controls necessary to ensure conformance to specifications
  16. § 820.70(b) for changes to a specification, method, process, or procedure
  17. § 820.70(c) to adequately control these environmental conditions
  18. § 820.70(e) to prevent contamination of equipment or product by substances that could reasonably be expected to have an adverse effect on product quality
  19. § 820.70(h) for the use and removal of such manufacturing material to ensure that it is removed or limited to an amount that does not adversely affect the device’s quality
  20. § 820.72(a) to ensure that equipment is routinely calibrated, inspected, checked, and maintained
  21. § 820.75(b) for monitoring and control of process parameters for validated processes to ensure that the specified requirements continue to be met
  22. § 820.80(a) for acceptance activities
  23. § 820.80(b) for acceptance of incoming product
  24. § 820.80(c) to ensure that specified requirements for in-process product are met
  25. § 820.80(d) for finished device acceptance to ensure that each production run, lot, or batch of finished devices meets acceptance criteria
  26. § 820.90(a) to control product that does not conform to specified requirements
  27. § 820.90(b)(1) that define the responsibility for review and the authority for the disposition of nonconforming product
  28. § 820.90(b)(2) for rework, to include retesting and reevaluation of the nonconforming product after rework, to ensure that the product meets its current approved specifications
  29. § 820.100(a) for implementing corrective and preventive action
  30. § 820.120 to control labeling activities
  31. § 820.140 to ensure that mixups, damage, deterioration, contamination, or other adverse effects to product do not occur during handling
  32. § 820.150(a) for the control of storage areas and stock rooms for product to prevent mixups, damage, deterioration, contamination, or other adverse effects pending use or distribution and to ensure that no obsolete, rejected, or deteriorated product is used or distributed
  33. § 820.150(b) that describe the methods for authorizing receipt from and dispatch to storage areas and stock rooms
  34. § 820.160(a) for control and distribution of finished devices to ensure that only those devices approved for release are distributed and that purchase orders are reviewed to ensure that ambiguities and errors are resolved before devices are released for distribution
  35. § 820.170(a) for ensuring proper installation so that the device will perform as intended after installation
  36. § 820.184 to ensure that DHR’s for each batch, lot, or unit are maintained to demonstrate that the device is manufactured in accordance with the DMR and the requirements of this part
  37. § 820.198(a) for receiving, reviewing, and evaluating complaints by a formally designated unit
  38. § 820.200(a) for performing and verifying that the servicing meets the specified requirements
  39. § 820.250(a) for identifying valid statistical techniques required for establishing, controlling, and verifying the acceptability of process capability and product characteristics
  40. § 820.250(b) to ensure that sampling methods are adequate for their intended use and to ensure that when changes occur the sampling plans are reviewed

Some Thoughts on Institutions

Today on Morning Edition Condoleezza Rice shared that the founders of the American republic understood institutions weren’t built for human perfections, but for human imperfections [1]. If only present day leaders understood institutions in this way, too.

We humans don’t always act in ways that help us achieve our goals. Our imperfections get in the way. So we establish ways of doing things, patterns of behavior, to help us act appropriately. This is particularly valuable during times when our judgment is clouded.

In our pursuit of ever more ambitious goals, goals that require coordinated action of many individuals, we need a system of such procedures that is designed to help us achieve those goals. When we put these procedures into practice, we collectively move toward our goals. When this pattern of behavior persists over time, we give rise to a recognizable entity: an institution.

Institutions exist to help us act in ways that make it possible to achieve the goals we set for them. They are especially valuable at times when we experience uncertainty that stokes our primal fear.

 


[1] Condoleezza Rice: Institutions Aren’t Perfect, But They’re The Bedrock Of Democracy

Book Review: “Systems Thinking For Social Change”

Systems Thinking For Social Change“Why are people unable to solve a chronic complex problem or achieve a meaningful goal—often despite their best efforts?” David Peter Stroh offers insight into this question in Systems Thinking for Social Change. The book is a good blend of theory and practice. In it Stroh draws a contrast between our conventional ways thinking, which seek to understand and change the world in terms of its parts, and thinking in terms of systems, which emphasizes understanding and changing the relationships between these parts.

He attempts to show the effects of these two ways of thinking with several examples pulled from current issues. Among them are homelessness, mass incarceration, and rural housing development. However, Stroh runs the risk of losing readers of a particular ideological bent when he let’s his views slip into his explanations of the examples. This even as he rightly states the requirement to engage diverse stakeholders in creating a rich understanding of a system. That would be unfortunate as Systems Thinking for Social Change has much to offer in helping people think differently so that we may come together to solve whatever problem we are confronting.

Stroh’s style is generally accessible, although it did test my focus in a couple of spots. He avoids jargon and keeps his language understandable. He methodically introduces the reader to thinking in terms of systems; on how to use this new skill to map systems and see himself and his world in a new way; on how to identify desirable and undesirable dynamics of a system, and on how to act in a way that brings about desired change. The chapters are short, made to feel even shorter with many subsections. In keeping with the systems approach of using graphics to tell stories, they contain lots of systems maps and graphs. I do wish the many maps showing causal links also included the direction of change with those links.

I think Systems Thinking for Social Change is a book you will return to repeatedly as you practice the tools it teaches. Having said that, neither Stroh nor this book will miraculously transform you into a systems thinker or reshape the way you view the world. That is something you will have to do on your own through practice. I used it to map a couple of systems at my place of work. These gave me insight into the dynamics at play. I have shown my maps to colleagues to their approval. If nothing else, we now share an awareness of what is going on. Change is not brought about through thought alone. While ideas serve to inspire, change comes about through action.

The Weekly Meeting

Monday afternoons at two-thirty. That was the time for our weekly staff meeting. When I joined the company everyone was required to attend it: engineers, technicians and operators. The head of our department, the Director of Quality, led it.

It was a rare week when the meeting started on time. Mondays were also when we had our one-on-one meetings with the Director and he had one of those exchanges going on right before our staff meeting. It always went over. So several of us would gather and wait outside of the meeting room until we were noticed and motioned to come in.

Even with this routine delay I don’t remember a single week when everyone was present before the meeting started. There was frequently at least one person who creeped in late. It wasn’t always the same person either. Some late comers might put on an apologetic face at times, but a few were shamelessly indifferent of their indiscretion.

Just as the meeting never started on time, it didn’t end on time either. I recall a few occasions when I wondered whether the meeting actually ended.

The Director got our meeting going by sharing a subset of the highlights and lowlights of the previous week that he gets in an email from the corporate overlords. We cheered the highlights and bemoaned the lowlights even though none of us could draw a connection to any them with the specific work we did. They did not prompt any actions for our department. They were also divorced from similar points shared in the previous week; presented as stand-alone bits of information. On those occasions when someone did make a tentative connection, it unleashed pent up frustrations with people feeding off of each other to blame some nonpresent “they.” So what purpose did this update serve? I couldn’t tell you.

Following the update, the Director shared his schedule for the current week. It always showed back-to-back meetings, sometimes overlapping, from the start of the workday to its end, for the whole week. So when did he have time to think and plan, to draw up an agenda for his meetings, to follow-up on assignments, to analyze, understand, and guide the performance of the system he was charged to direct? At first I had felt sympathy. What sort of monstrous organization drives its people like this? But it didn’t last long. I recognized much of it was self imposed and not a demand of the organization. It was his way of showing others how busy and engaged he was, how hard he was working, how committed he was to the company. It was all light and no heat. Perhaps I’m being harsh, but I don’t think so.

After he finished his update he would ask each staff member if they had anything to share. Most did not. Some, though, shared information on what they were doing in excruciating detail. Usually it was about “unexpected” hurdles, blocks, or breakdowns. They were the same from week to week. This was another opportunity to vent about those others who didn’t follow procedures, the unreasonable surge in demand for our services, or how the system is broken and needs fixing. Who is going to fix it? How should it be fixed? What resources are needed for the fix? That requires a plan. But when is there time and space for that?

Once a month the Director would remind everyone to calculate and report metrics they were responsible for. It shouldn’t come as a surprise that at least one was delayed. Not always the same one, but it came with all the usual excuses.

That was the ritual.

Hiring the Best and Brightest

Companies have been proudly proclaiming that they hire only the best and brightest. Ignoring the fact that this is a bogus claim – personal experience at a dozen different companies has demonstrated otherwise – a firm would find it all but impossible to function with the best and brightest.

Back in 1994 Dr Russell Ackoff shared an example that elegantly explains why.

I read in the New York Times recently that 457 different automobiles are available in the United States. Let’s buy one of each and bring them into a large garage.

Let’s then hire 200 of the best automotive engineers in the world and ask them to determine which car has the best engine. Suppose they come back and say Rolls Royce has the best engine. Make a note of it.

“Which one has the best transmission?”, we ask them and they go run tests and come back and say the Mercedes does.

“Which one has the best battery?” [They] come back and say the Buick does.

And one by one, for every part required for an automobile, they tell us which is the best one available.

Now we take that list and give it back to them and say “Remove those parts from those cars. Put them together into the best possible automobile,” because now we’ll have an automobile consisting of all the best parts.

What do we get? You don’t even get an automobile, for the obvious reason that the parts don’t fit!

The performance of the system depends on how the parts fit, not how they act taken separately.

A significant portion of organizational excellence depends on how employees interact with one another i.e. how they fit together, not how they act individually.

Dr. Ackoff’s entire talk titled “Beyond Continual Improvement” is worth listening to.

Targets Deconstructed

“Eliminate numerical goals, posters, and slogans for the work force, asking for new levels of productivity without providing methods.”

— Point No. 10 in Dr. W. E. Deming’s 14 points for management as written in “Quality, Productivity, and Competitive Position.”

A few weeks ago I had an excellent exchange on Twitter with UK Police Inspector Simon Guilfoyle on the topic of setting numerical targets. He asked “How do you set a numerical target without it being arbitrary? By what method?” Unfortunately, Twitter’s 140 character limit isn’t sufficient for adequately answering his question. I promised him I would write a post that explained my thinking.

When I was working for Samsung Austin Semiconductor (SAS) as a quality assurance engineer, one of my assigned responsibilities was to manage the factory’s overall nonconforming material rate. Over the course of my second year, the factory averaged a four percent* nonconforming material rate. The run chart for the monthly nonconforming material rate showed a stable system of variation.

As the year drew to a close, I began thinking about my goals for the following year. I knew I would continue to be responsible for managing the factory’s overall nonconforming material rate. What should I set as my target for it? Not knowing any better, I set it to be the rate we achieved for the current year: four percent. If nothing else, it was based on data. But my manager at the time, a Korean professional on assignment to the factory, mockingly asked me if I wasn’t motivated to do better. He set my target at two percent*; a fifty percent reduction.

What was the two percent number based on? How did he come about it? I had no insight and he didn’t bother to explain it either. From my perspective, it was an arbitrary numerical target; plucked out of thin air. I remember how incredibly nervous I felt about it. How was I going to achieve it? I had no clue nor guidance. I also remember how anxiety filled and frustrating the following year turned out for me. I watched the rate with a hawk eye. I hounded process engineers to do something whenever their process created a nonconforming lot. It was not a pleasant time for anyone.

Since then I’ve worked at several other companies in different industries. Nevertheless, my experience at SAS seems to be the norm when it comes to setting targets. This is regardless of the role, the industry or the culture. And, as far as I’ve been able to figure out, this approach to setting targets is driven more by tradition and arrogance than any objective thoughtful method. “Improve performance by 50% over last year!”, so the mantra goes. Worse still, no method is provided for achieving such arbitrary improvement targets. I’ve been told “You’re smart. You’ll figure out how to do it.”

So it’s not a surprise for me that folks like the good Inspector have become convinced all numerical targets are inherently arbitrary; that there is no objective and justifiable way to set them. Having been on the receiving end of such targets many times, I used to think the same, too. But just because people don’t know of a different way to set a target, one that is objective and can be justified, doesn’t mean there isn’t one. I believe numerical targets can be set in an objective fashion. It, however, requires thoughtfulness, great effort and understanding on the part of the person setting the target.

One way to set a target is to use the performance of a reference for comparison. In my case, the SAS factory I worked at had a sister facility in Korea. It would have been reasonable, albeit crude, to set my target for the nonconforming material rate to that achieved by the sister facility (if it was better.**) An argument could have been made that the target was achieved elsewhere, so it can be reached.

As part of our Twitter exchange, the Inspector made the point that regardless of whether these factories were defined to be sisters, there would still be differences between them. Therefore, they will generate a nonconforming material rate that is a function of their present system architecture. He is absolutely right! Setting a target for my factory based on the performance achieved by its sister facility alone will do nothing to improve the performance of my factory. It’s already doing the best it can.

But that’s not the point of setting the target: to operate the same system and expect an improved performance. The point of setting the target is to trigger a change in the system, a redesign in such a way as to achieve a level of performance that, in this case, has been achieved elsewhere. The sister system can be treated as a reference and studied. Differences between systems may be identified and eliminated. Along the way we may find out that some differences cannot be eliminated. Nevertheless, by eliminating the differences where possible the two systems are made more similar to one another and we will have improved the performance.

In the absence of a reference, simulations may be used to objectively define a target. The factory’s overall nonconforming material rate is the combined result of the nonconforming material rates of its individual processes. Investigating the performance of these inputs can help identify opportunities for improvement for each: stabilizing unstable processes, running stable processes on target, reducing the variability of stable on-target processes. All of this can be simulated to determine what is ideally possible. A justifiable target for the nonconforming material rate can then be set with the results. Best of all, the method by which it can be achieved gets defined as part of the exercise.

Finally, targets may be set by the state of the greater environment within which a system operates. All systems operate in a greater environment (e.g. national or global economy); one that is continuously changing in unpredictable ways. City populations grow or shrink. Markets grow or shrink. Polities combine or fragment. What we once produced to meet a demand will in a new environment prove to be too little or too much. A change in state of the external environment should trigger a change in the target of the system. A change in the target of the system should trigger a redesign of the system to achieve it. In Systems lingo, this is a tracking problem.

Targets are essential. They help guide the design or redesign of the system. They can be defined objectively in several different ways. I’ve outlined three above. They do not have to be set in the arbitrary way they currently are. But setting targets isn’t enough. Methods by which to achieve them must be defined. Targets, even objective ones, are meaningless and destructive without the means of achieving them. Failure to achieve targets should trigger an analysis into why the system failed. They should not be used to judge and blame workers within the system.

Sadly, people are like water, finding and using the path of least resistance. Setting arbitrary improvement targets is easier than doing all the work required to set objective ones. They have been successfully justified on the grounds of mindless ambition. No one questions the approach out of fear or ignorance. Positional authority is often used to mock or belittle the worker for not being motivated enough when the truth is something else: managerial ignorance and laziness to do their job.


* I’ve changed the numbers for obvious reasons. However, the message remains the same.

** As it turned out, the nonconforming material rate achieved at my factory was the best ever in all of Samsung!

 

Quality Is The Problem

Last month I asked “How are you, as a Quality professional, perceived?” in several LinkedIn discussion groups. I hoped to understand what we thought others thought of us. I wanted a qualitative measure of our awareness.

I parsed 108 comments from 55 people. Of them, 30 felt they were perceived poorly, 17 were ambivalent, and 8 felt that others viewed them favorably. The comments fell into one of the following categories:

(+) Consultant/Improvers
(-) Fear/Loathe
(-) Cops/Surveillance
(-) Barriers/Bottlenecks
(-) Necessary Evil/Imposed Cost
(-) Hard to Understand

It appears we, Quality professionals, are very aware. We are sensitive to what others think of us. That is the good news. The bad news, however, and it is really bad news, is that we seem to think others consider us a serious drag on business.

I wondered if such harsh self-criticism was just an issue of poor self-esteem, but I don’t think it is. Based on my observations and experience, I find it to be a fair assessment of how others view us. Even we hold such views of other fellow Quality professionals.

But hold on second. That is not what our profession is about. We are not supposed to be drags on business. We are supposed to be the people that help the makers make things better, faster, stronger.

So where are we going wrong?

If the definition of quality has to do with meeting or exceeding the expectations of the consumer, first we need to understand who is the consumer of the services that Quality professionals offer. Isn’t it our employer? The end user isn’t paying for what we do. Next we need to understand what are the consumer’s expectations. How many of us really understand our employer’s wants? (Try not to substitute in what you think the employer should want with what the employer actually wants. Also, let’s get real, most companies’ Quality Policy is just a set of platitudes.) Finally, we need to evaluate our efforts in the context of what our employer wants.

In this light, do the results our actions as Quality professionals conform to the requirements of our employer? If not, aren’t we imposing a loss on our employer, to use Taguchi’s term? And, from the looks of the categories above, it is not an insignificant loss. Contrary to our purpose, we are generating suffering through our actions!

It is not the role of the Quality professional to set the objectives for the company. It is our role in the service of our employer to provide options on how best to meet those objectives. It is not the role of the Quality professional to choose the ‘best’ option. It is our role to help execute our employer’s choice in the most effective way. I think it would serve us well to get off of our high horses and stop thinking of ourselves as saviors. The sooner we start cooperating with others – being of service to them instead of demanding actions from them – the better we will all be.

References

Dealing with Nonconforming Product

A particular process makes parts of diameter D. There are 10 parts produced per batch. The batches are sampled periodically and the diameter of all the parts from the sampled batch is measured. Data, representing deviation from the target, for the first 6 sampled batches is shown in Table 1. The graph of the data is shown in Figure 1. Positive numbers indicate the measured diameter was larger than the target while negative numbers indicate the measured diameter was smaller than the target. The upper and lower specification limits for acceptable deviation are given as +/- 3.

NCM-Tab1

Table 1. Data for six batches of 10 parts each. The numbers represent the deviation from the target.

NCM-Fig1

Figure 1. Graph of the data from the table above. The most recent batch, batch number six, shows one part was nonconforming.

The most recent batch, sample batch number six, shows one of the 10 parts having a diameter smaller than the lower specification limit. As such, it is a nonconforming part.

The discovery of a nonconforming product triggers two parallel activities: i) figuring out what to do with the nonconforming product, and ii) addressing the cause of the nonconforming product to inhibit the nonconformance from occurring again.

PRODUCT DISPOSITION

Nonconforming product may be repaired or reworked when possible, but it can always be scrapped. Each one of these three options has its own set of complications and cost.

Repairing a nonconforming product involves additional steps beyond what are usually needed to make the product. This additional processing has the potential to create previously unknown weaknesses in the product e.g. stress concentrations. So repaired product will need to be subjected to testing that verifies it still satisfies its intended use. For this particular case, repairing is not possible. The diameter is smaller than the target. Repair would have been possible if the diameter had been larger than the target.

Reworking a nonconforming product involves undoing the results of the previous process steps, then sending the product through the standard process steps a second time. Undoing the results of the previous process steps involves additional process steps just as were required to repair a nonconforming product. This additional processing has the potential to create previously unknown weaknesses in the product. Reworked product will need to be subjected to testing that verifies it still satisfies its intended use. For this particular case, reworking is not possible.

Scrapping a nonconforming product means to destroy it so that it cannot be accidentally used. For this particular case, scrapping the nonconforming part is the only option available.

ADDRESSING THE CAUSE

In order to determine the cause of the nonconformity we have to first determine the state of the process i.e. whether the process is stable or not. The type of action we take depends on it.

A control chart provides a straightforward way to answer this question. Figure 2. shows an Xbar-R chart for this process. Neither the Xbar chart (top), nor the R chart (bottom) show uncontrolled variation. There is no indication of a special cause affecting the process. This is a stable process in the threshold state. While it is operating on target i.e. its mean is approximately the same as the target, its within-batch variation is more than we would like. Therefore, there is no point trying to hunt down a specific cause for the nonconforming part identified above. It is most likely the product of chance variation that affects this process; a result of the process’s present design.

NCM-Fig2

Figure 2. Xbar-R chart built using the first six sampled batches. Neither the Xbar chart nor the R chart show uncontrolled variation. There is no indication of a special cause affecting the process.

In fact, the process was left alone to collect more data (Figure 3.). The Xbar-R charts do not show any unusual variation that would indicate external disturbances affecting the process. Its behavior is predictable.

NCM-Fig3

Figure 3. More data was collected and the control limits were recalculated using the first 15 sampled batches. The process continues to look stable with no signs of external disturbance.

But, even though the process is stable, it does produce nonconforming parts from time to time. Figure 4. shows that a nonconforming part was produced in sampled batch number 22 and one in sampled batch number 23. Still, it would be wasted effort to hunt down specific causes for the creation of these nonconforming parts. They are the result of chance variation that is a property of the present process design.

NCM-Fig4

Figure 4. Even though the process is stable it still occasionally produces nonconforming parts. Sampled batch number 22 shows a nonconforming part with a larger than tolerable diameter while sampled batch number 23 shows one with a smaller than tolerable diameter.

Because this process is stable, we can estimate the mean and standard deviation of the distribution of individual parts. They were calculated to be -0.0114 and 0.9281. Assuming that the individual parts are normally distributed, we can estimate that this process will produce about 0.12% nonconforming product if left to run as is. Some of these parts will be smaller than the lower specification limit for the diameter. Others will be larger than the upper specification limit for the diameter. That is, about 12 nonconforming pieces will be created per 10,000 parts produced. Is this acceptable?

If the calculated nonconforming rate is not acceptable, then this process must be modified in some fundamental way. This would involves some sort of structured experimentation using methods from design of experiments to reduce variation. New settings for factors like RPM or blade type among others will need to be determined.

A Reflection on Culture

varanasiThrough the books I’ve recently read I’ve come to see culture as an output, a result or an emergent property of a system. Furthermore, just like all outputs, it cannot be managed directly, as Matthew E. May points out in his post “To Change A Culture, Change The System.” The only way to manage outputs is to change the inputs to the system and/or change the system.

I’ve come to believe that we’re wired to focus on outputs and sort good from bad. And, why not? For most of our evolution we’ve never had any control of our environment. We’ve been a part of the system. In that context it’s perfectly natural for us to comment on culture and sort it into good or bad. However, just as you can’t inspect quality into a product as Harold S. Dodge pointed out, you can’t improve culture by calling out its positive or negative attributes.

In the case of the modern organization, perhaps you can select the type of people to minimize cultural diversity. (Cultural diversity here refers to mindset, drive, focus, etc.) But in my experience, with the way that process (i.e. interviews) works right now, it amounts to shots in the dark. Better to setup a system that is robust to the variation in its human resource to yield a cohesive culture.

System design requires designers (leaders) who have a vision for the system. They must understand the context for their system and then design their system to produce the desired result. These are all skills that can be learned, but so few bother. It’s hard work. There’s no instant pudding. But who’s got the time?

Perceptions Dictate Actions

Abraham Maslow proposed a theory on human motivation outlining an hierarchy of needs we all move through. Whether the hierarchical structure strictly applies may be questionable, but his categories of needs can be accepted as defined with an appeal to personal experience.

At various points in our lives we have felt a need for food, water and shelter, safety and security, stability, friendship, love, respect, and growth. Maslow grouped these needs into five categories: physiological, safety, love/belonging, esteem, and self-actualization. While he organized these categories in an hierarchy, I find it more meaningful to think of them as factors that combine and interact to give rise to various mental states.

Personal experience has led me to believe mental states affect perception. A given situation will be perceived differently under different mental states. And, how you perceive affects how you react. If your mental state is dominated by a sense of insecurity, you will perceive your situation as threatening and react accordingly. Futhermore, no other category of need will feel worthwhile until the one dominating your mental state has been attended to.

It has also been my experience that people with dissimilar mental states have difficulty relating to one another in a productive fashion. Because mental states affect perception, dissimilar states result in different perspectives of the same issue. Differing perspectives are not conducive to forming the common understanding necessary to cooperatively face a situation. People talk past one another. Messages are misunderstood. Communication doesn’t take place.

Given that it’s unlikely two people will share similar mental states at any given time, how does one move across this emotional minefield? Meditation and self-reflection have helped me to characterize my mental state. This awareness has opened up a choice for me unavailable before: how do I want react to things? At the very least I have an option to not make things worse. I can also attempt to ascertain the other person’s mental state and work towards common understanding.